6 research outputs found

    Automatic Image Registration in Infrared-Visible Videos using Polygon Vertices

    Full text link
    In this paper, an automatic method is proposed to perform image registration in visible and infrared pair of video sequences for multiple targets. In multimodal image analysis like image fusion systems, color and IR sensors are placed close to each other and capture a same scene simultaneously, but the videos are not properly aligned by default because of different fields of view, image capturing information, working principle and other camera specifications. Because the scenes are usually not planar, alignment needs to be performed continuously by extracting relevant common information. In this paper, we approximate the shape of the targets by polygons and use affine transformation for aligning the two video sequences. After background subtraction, keypoints on the contour of the foreground blobs are detected using DCE (Discrete Curve Evolution)technique. These keypoints are then described by the local shape at each point of the obtained polygon. The keypoints are matched based on the convexity of polygon's vertices and Euclidean distance between them. Only good matches for each local shape polygon in a frame, are kept. To achieve a global affine transformation that maximises the overlapping of infrared and visible foreground pixels, the matched keypoints of each local shape polygon are stored temporally in a buffer for a few number of frames. The matrix is evaluated at each frame using the temporal buffer and the best matrix is selected, based on an overlapping ratio criterion. Our experimental results demonstrate that this method can provide highly accurate registered images and that we outperform a previous related method

    Robust Face Tracking in Video Sequences

    Get PDF
    Ce travail présente une analyse et une discussion détaillées d’un nouveau système de suivi des visages qui utilise plusieurs modèles d’apparence ainsi qu’un e approche suivi par détection. Ce système peut aider un système de reconnaissance de visages basé sur la vidéo en donnant des emplacements de visages d’individus spécifiques (région d’intérêt, ROI) pour chaque cadre. Un système de reconnaissance faciale peut utiliser les ROI fournis par le suivi du visage pour obtenir des preuves accumulées de la présence d’une personne d’une personne présente dans une vidéo, afin d’identifier une personne d’intérêt déjà inscrite dans le système de reconnaissance faciale. La tâche principale d’une méthode de suivi est de trouver l’emplacement d’un visage présent dans une image en utilisant des informations de localisation à partir de la trame précédente. Le processus de recherche se fait en trouvant la meilleure région qui maximise la possibilité d’un visage présent dans la trame en comparant la région avec un modèle d’apparence du visage. Cependant, au cours de ce processus, plusieurs facteurs externes nuisent aux performances d’une méthode de suivi. Ces facteurs externes sont qualifiés de nuisances et apparaissent habituellement sous la forme d’une variation d’éclairage, d’un encombrement de la scène, d’un flou de mouvement, d’une occlusion partielle, etc. Ainsi, le principal défi pour une méthode de suivi est de trouver la meilleure région malgré les changements d’apparence fréquents du visage pendant le processus de suivi. Étant donné qu’il n’est pas possible de contrôler ces nuisances, des modèles d’apparence faciale robustes sont conçus et développés de telle sorte qu’ils soient moins affectés par ces nuisances et peuvent encore suivre un visage avec succès lors de ces scénarios. Bien qu’un modèle d’apparence unique puisse être utilisé pour le suivi d’un visage, il ne peut pas s’attaquer à toutes les nuisances de suivi. Par conséquent, la méthode proposée utilise plusieurs modèles d’apparence faciale pour s’attaquer à ces nuisances. En outre, la méthode proposée combine la méthodologie du suivi par détection en employant un détecteur de visage qui fournit des rectangles englobants pour chaque image. Par conséquent, le détecteur de visage aide la méthode de suivi à aborder les nuisances de suivi. De plus, un détecteur de visage contribue à la réinitialisation du suivi pendant un cas de dérive. Cependant, la précision suivi peut encore être améliorée en générant des candidats additionnels autour de l’estimation de la position de l’objet par la méthode de suivi et en choisissant le meilleur parmi eux. Ainsi, dans la méthode proposée, le suivi du visage est formulé comme le visage candidat qui maximise la similitude de tous les modèles d’apparence.----------ABSTRACT: This work presents a detailed analysis and discussion of a novel face tracking system that utilizes multiple appearance models along with a tracking-by-detection framework that can aid a video-based face recognition system by giving face locations of specific individuals (Region Of Interest, ROI) for every frame. A face recognition system can utilize the ROIs provided by the face tracker to get accumulated evidence of a person being present in a video, in order to identify a person of interest that is already enrolled in the face recognition system. The primary task of a face tracker is to find the location of a face present in an image by utilizing its location information from the previous frame. The searching process is done by finding the best region that maximizes the possibility of a face being present in the frame by comparing the region with a face appearance model. However, during this face search, several external factors inhibit the performance of a face tracker. These external factors are termed as tracking nuisances, and usually appear in the form of illumination variation, background clutter, motion blur, partial occlusion, etc. Thus, the main challenge for a face tracker is to find the best region in spite of frequent appearance changes of the face during the tracking process. Since, it is not possible to control these nuisances. Robust face appearance models are designed and developed such that they do not too much affected by these nuisances and still can track a face successfully during such scenarios. Although a single face appearance model can be used for tracking a face, it cannot tackle all the tracking nuisances. Hence, the proposed method utilizes multiple face appearance models. By doing this, different appearance models can facilitate tracking in the presence of tracking nuisances. In addition, the proposed method, combines the tracking-by-detection methodology by employing a face detector that outputs a bounding box for every frame. Therefore, the face detector aids the face tracker in tackling the tracking nuisances. In addition, a face detector aids in the re-initialization of the tracker during tracking drift. However, the precision of the tracker can further be improved by generating face candidates around the face tracking output and choosing the best among them. Thus, in the proposed method, face tracking is formulated as the face candidate that maximizes the similarity of all the appearance models

    Tracking using numerous anchor points

    No full text
    In this paper, an online adaptive model-free tracker is proposed to track single objects in video sequences to deal with real-world tracking challenges like low-resolution, object deformation, occlusion and motion blur. The novelty lies in the construction of a strong appearance model that captures features from the initialized bounding box and then are assembled into anchor-point features. These features memorize the global pattern of the object and have an internal star graph-like structure. These features are unique and flexible and helps tracking generic and deformable objects with no limitation on specific objects. In addition, the relevance of each feature is evaluated online using short-term consistency and long-term consistency. These parameters are adapted to retain consistent features that vote for the object location and that deal with outliers for long-term tracking scenarios. Additionally, voting in a Gaussian manner helps in tackling inherent noise of the tracking system and in accurate object localization. Furthermore, the proposed tracker uses pairwise distance measure to cope with scale variations and combines pixel-level binary features and global weighted color features for model update. Finally, experimental results on a visual tracking benchmark dataset are presented to demonstrate the effectiveness and competitiveness of the proposed tracker.Comment: Revised text version. Accepted for publication in Journal of Machine Vision and Applications, December, 201
    corecore